Supplementary Information

Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-ray

by

Roberta Sessoli, Marie-Emmanuelle Boulon, Andrea Caneschi, Matteo Mannini, Lorenzo Poggini,
Fabrice Wilhelm, and Andrei Rogalev

Supplementary Figure 1. View of the asymmetric unit of the Cobalt(II) (top) and Manganese(II) (bottom) helices of formula $[M(hfac)_2NITPhOMe]_{\infty}$. The hydrogen atoms have been omitted for the sake of clarity. Colour code in the legend. The octahedron around the metal ions is completed by the O2 atom of a neighbour radical labeled as O2#.

Supplementary Figure 2. Projected Density of States on p-type orbitals (blue, intensity multiplied by 10) and d-type orbitals (red) calculated for the $[Mn(hfac)_2NITPhOMe]_{\infty}$ (top) and $[Co(hfac)_2NITPhOMe]_{\infty}$ (bottom) as described in the main text. On the right the region around the Fermi energy is enlarged. The contribution of s-type orbitals has been omitted for the sake of clarity as these orbitals do not contribute to the observed signals.

Supplementary Figure 3. Schematic structure of the nitronyl-nitroxide radicals present in the P3₁ structure $[M(hfac)_2NITPhOMe]_{\infty}$ (left) and in the P2₁/c structure $[Mn(hfac)_2NITiPr]_{\infty}$ (right).

Supplementary Figure 4. View of the structure of the $[Mn(hfac)_2NITiPr]_{\infty}$ chain compound. Large green and pink spheres represent Co and Mn atoms artificially segregated in the two acentric sublattices employed in the additional calculations. Colour code for other atoms: carbon atoms, grey; fluorine, yellow; oxygen, red; nitrogen, blue. Hydrogen atoms have been omitted for the sake of clarity, red, green and blue axis represent a, b and c crystallographic axis, respectively.

Supplementary Figure 5. Top) Calculated XANES and XNCD spectra at the Mn and Co K-edge using the method described in the main text and assuming the artificially segregated structure of $[M(hfac)_2NITiPr]_{\infty}$, M=Mn, Co, depicted in Supplementary Figure 4, corresponding to the P2₁ space group for each metallic atomic species. Bottom) Same calculations performed with the structures of the investigated $[M(hfac)_2NITPhOMe]_{\infty}$ samples, corresponding to the P3₁ space group. Energies are reported as the difference from the corresponding edge values (E₀). The XNCD spectra at Mn and Co edge have opposite sign, being the two artificial sub-lattices related by the inversion centre. The comparison with the calculated XNCD for the crystallographic structures of $[M(hfac)_2NITPhOMe]_{\infty}$ in the P3₁ space group evidences for the latter a significantly larger dichroic signal at the pre-edge (slightly negative energy values) corresponding to transitions to partially occupied 3*d* orbitals.

Supplementary Table 1. Bond distances in (Å) and bond-angles (°) around the metal centre of the $[M(hfac)_2NITPhOMe]_{\infty}$ helices, for M=Co and Mn. Atom labelling is described in Supplementary Figure 1.

Bond distances		
	M=Co	M=Mn
M-O2#	2.111	2.143
M-O3	2.097	2.121
M-O4	2.058	2.141
M-O5	2.040	2.125
M-O6	2.029	2.090
M-O7	2.085	2.194

Bond angles		
O2#-M-O3	85.24	86.92
O2#-M-O4	87.62	85.40
O2#-M-O5	97.15	99.67
O2#-M-O6	95.51	100.09
O3-M-O4	172.70	171.90
O3-M-O5	92.34	93.81
O3-M-O6	84.31	85.76
O3-M-O7	99.11	100.93
O4-M-O5	90.00	84.96
O4-M-O6	94.93	98.10
O4-M-O7	88.05	86.86
O5-M-O6	166.59	160.18
O5-M-O7	81.90	82.27
O6-M-O7	85.81	78.34

Supplementary Note 1

The XANES and XNCD spectra were also calculated for a virtual acentric structure not comprising the three-fold screw axis. The atomic coordinates of the compound $[Mn(hfac)_2NITiPr]_{\infty}$ differing from the investigated one only for the organic residue on the radical as shown in Supplementary Figure 3.

As the $[Mn(hfac)_2NITiPr]_{\infty}$ chain compound crystallizes in the centric $P2_1/c$ monoclinic space group no optical activity is expected. However, the crystallographic coordinates have been modified by assuming $P2_1$ symmetry and substituting Mn atoms with Co atoms on the sites related by the inversion centre, as shown in Supplementary Figure 4. Given the atomic character of the employed X-ray spectroscopy the XANES and XNCD spectra can be calculated at the Mn and Co K-edge through the FDMNES code (see main text).